
International Journal of Solids and Structures 43 (2006) 3444–3458

www.elsevier.com/locate/ijsolstr
Dislocation equilibrium conditions revisited

V.A. Lubarda *

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

Received 27 February 2005; received in revised form 12 June 2005
Available online 15 August 2005
Abstract

If there is an equilibrium arrangement of a given collection of dislocations, each having a fixed size and shape, in an
externally loaded or unloaded elastic body, the corresponding potential energy will be stationary with respect to infin-
itesimal perturbations of the dislocation positions. This leads to the dislocation equilibrium conditions: the Peach–
Koehler forces along the dislocation line of each dislocation due to externally applied stress and the interaction of
the dislocation with other dislocations and its own image field is a set of self-equilibrated forces. The earlier proof
of this result presented in the literature was based on an incomplete expression for the elastic strain energy. This is mod-
ified here by using the elastic strain energy expression that accounts for all dislocation core energy.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A significant progress has been made during the past fifteen years in the development of a dislocation-
based plasticity theory and the analysis of its relationship to various phenomenological continuum plastic-
ity theories (Gulluoglu et al., 1989; Amodeo and Ghoniem, 1990a,b; Kubin et al., 1992; Van der Giessen
and Needleman, 1995; Cleveringa et al., 1999; Zbib et al., 1998, 2002; Needleman and Van der Giessen,
2001; Deshpande et al., 2003; Ghoniem et al., 2003; Acharya, 2004). In a dislocation-based analysis plastic
deformation is viewed to be a consequence of the collective motion of large numbers of dislocations de-
scribed as line defects in an elastic body. Toward this analysis, Lubarda et al. (1993) studied the equilibrium
arrangements of dislocations in an externally unloaded elastic body by finding the configurations that
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minimize the elastic strain energy with respect to infinitesimal variations of the dislocation positions. The
corresponding dislocation equilibrium conditions were that the Peach–Koehler forces along each disloca-
tion line, due to its interaction with other dislocations and its own image field, represent a set of the
self-equilibrated forces. This result was derived in their paper by using an expression for the elastic strain
energy which only partly accounted for the elastic core energies. The derivation is modified here by using a
complete expression for the elastic strain energy that, in principle, accounts for all dislocation core energy.
The potential energy expression for the dislocations in an externally loaded or constrained body, with the
corresponding conditions for the equilibrium dislocation configurations, are also derived. In addition to
dislocations with a fixed size and shape, the presented analysis may also be of interest to study the equilib-
rium or moving configurations of dislocations that can change their size and shape, for which the self-ener-
gies of individual dislocation loops and the interaction of dislocation segments among themselves play an
important role.
2. Elastic strain energy of a dislocated body

Consider an externally unloaded body of volume V bounded by the surface S. The body is in the state of
a self-equilibrated stress r and the corresponding strain �, which are produced by a given distribution of n

planar dislocation loops, as sketched in Fig. 1a. Each dislocation is created by making a planar cut within
the loop Li and displacing the lower face of the cut relative to the upper face by the constant Burgers vector
bi, i.e.,
1 Fo
uAi
�
� uAi

þ
¼ bi; i ¼ 1; 2; . . . ; n. ð1Þ
The outward unit normal to the lower face of the cut Ai
� is ni. The elastic stress and strain fields are inde-

pendent of the choice of an open surface emanating from Li across which the displacement discontinuity is
imposed to create a dislocation, so that the planar cuts are selected for convenience (or to make the contact
with the crystalline dislocations for which the slip occurs across the crystallographic planes).1 Since elastic
stress and strain fields become singular at the points of a dislocation loop due to the self-stress of each dis-
location (the strength of the singularity being 1/r, where r is the distance from the loop), the total elastic
strain energy will be formally infinitely large. If we imagine, as in Gavazza and Barnett (1976), that a dis-
location core—a small toroidal region V i

core around each dislocation loop, is removed from the body, the
elastic strain energy in the remaining part of the body (Fig. 1b), having the volume V0, is
U 0 ¼
1

2

Z
V 0

r : �dV ¼ 1

2

Xn

i¼1

Z
Si

T � u dS þ 1

2

Xn

i¼1

Z
Ai

0

ni � r � bi dA. ð2Þ
This directly follows from the Gauss divergence theorem. The traction vector over the inner surface Si of
the tube is T = ti Æ r and the associated displacement vector is u. The second surface integral in (2) is the
work of the traction ni Æ r on the slip discontinuity bi across the area Ai

0 ¼ Ai � Ai
core within each loop Li

outside the core region (Fig. 2b). The elastic strain energy in the whole body, including the core regions, is
U ¼ U 0 þ
Xn

i¼1

Ui
core ¼

1

2

Z
V 0

r : �dV þ
Xn

i¼1

U i
core. ð3Þ
Within the linear elastic theory and the Volterra type dislocations (constant Burgers vector everywhere
within the loop), the core energies U i

core are unbounded due to divergent self-stress and strain fields of each
dislocation at the points of the loop. However, as will be shown in Section 3, for the fixed size and shape of
r dislocations in multiply connected bodies, see Lubarda (1999) and Lubarda and Markenscoff (2003).



Fig. 1. (a) Dislocation loops within the body of volume V bounded by the surface S. (b) The volume V0 outside the core regions of the
dislocations. The traction vector over the internal core surface Si is T.

Fig. 2. (a) The toroidal core region around the dislocation line Li with the Burgers vector bi. For a glide dislocation bi is in the plane of
the loop. (b) The slip area Ai

0 within the dislocation loop outside the core region.
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the loops, the variational procedure based on dU = 0 outfaces the divergent part of U i
core, delivering the

dislocation equilibrium conditions independently of the singularity inherent in an idealized Volterra dislo-
cation model.

Lubarda et al. (1993), and Van der Giessen and Needleman (1995), considered the dislocation core ener-
gies to be equal to the work done by the tractions (�T), acting over external surfaces of the extracted toroi-
dal cores, on the corresponding displacements u, i.e.,
Xn

i¼1

U i
core ¼

1

2

Xn

i¼1

Z
Si
ð�TÞ � udS. ð4Þ
This expression does not include a (divergent) work contribution associated with the slip discontinuity bi

across the area Ai
core ¼ Ai � Ai

0 within the core region (Fig. 3). The complete expression for the core energy
is consequently
Xn

i¼1

U i
core ¼

1

2

Xn

i¼1

Z
Si
ð�TÞ � udS þ 1

2

Xn

i¼1

Z
Ai

core

ni � r � bi dA; ð5Þ
where the second term on the right-hand side is formally infinite for an idealized Volterra dislocation. As
discussed in Section 4, if the divergence of the stress and strain fields within the dislocation core is elimi-
nated by using more involved continuum or atomistic models (which take into account the crystallographic
structure near the dislocation line), it is found that the calculated core energy is very different from the trac-
tion work over the core surface alone (the performed calculations indicate that for glide dislocations the
core energy can be five or more times greater than the traction work alone).



Fig. 3. The extracted core of the dislocation (one half of the core is shown), with the surface traction (�T) acting over its external
surface Si. Also indicated is the cut surface within the core across which the displacement discontinuity is imposed.
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Returning to the total elastic strain energy, the expression used by Lubarda et al. (1993) is
U ¼ 1

2

Z
V 0

r : �dV þ 1

2

Xn

i¼1

Z
Si
ð�TÞ � udS ¼ 1

2

Xn

i¼1

Z
Ai

0

ni � r � bi dA; ð6Þ
while the complete expression for the elastic strain energy is
U ¼ 1

2

Xn

i¼1

Z
Ai

ni � r � bi dA ¼ U þ 1

2

Xn

i¼1

Z
Ai

core

ni � r � bi dA. ð7Þ
The divergent part of the strain energy in the above expression is circumvented by the variational procedure
based on dU = 0, as shown next.
3. Dislocation equilibrium conditions

As in Lubarda et al. (1993) and Lubarda (1993), the stress field in the dislocated body is written as the
sum of two fields, r ¼ ~rþ r̂. The field ~r is the infinite medium dislocation field, obtained by the superpo-
sition of the stress fields ~ri of individual dislocations in an infinite medium, i.e.,
~r ¼
Xn

i¼1

~ri. ð8Þ
Since ~r gives rise to surface traction eT ¼ n � ~r over the surface S bounding the volume V within the infinite
medium, the other stress field r̂ is introduced to cancel this surface traction (image field). Thus,
r � r̂ ¼ 0 in V ;

n � r̂ ¼ �
Xn

i¼1

eTi
on S.

ð9Þ
The sum of the two fields within the volume V defines the stress field of a dislocated body with zero traction
over its external surface S. Consequently,
ni � r � bi ¼ ni � r̂ � bi þ
X
j 6¼i

ni � ~rj � bi þ ni � ~ri � bi. ð10Þ
The substitution of (10) into (6) gives
U ¼ 1

2

Xn

i¼1

Z
Ai

ni � r̂þ
X
j6¼i

~rj

 !
� bi dAþ 1

2

Xn

i¼1

Z
Ai

ni � ~ri � bi dA. ð11Þ
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The integral
eU i

self ¼
1

2

Z
Ai

ni � ~ri � bi dA ð12Þ
is the self-energy of the ith dislocation in an infinite linearly elastic medium. The far-field displacements and
stresses fall off as 1/r2 and 1/r3, respectively, away from the loop (Hirth and Lothe, 1982), while the dom-
inant stress singularity near the loop is of the order 1/r. This leads to an unbounded value for eU i

self . How-
ever, since the self-energy of a dislocation loop in an infinite isotropic medium does not depend on its
position or orientation (assuming that the dislocation does not change its size or shape), the variation ofeU i

self with respect to the dislocation position is zero,
d eU i

self ¼ 0. ð13Þ

The first term on the right-hand side of (11) is bounded because the stresses within the loop i (including

the points of the dislocation line itself) due to the interaction with other loops j5i are all finite. Thus, as
shown in Appendix A, the variation of the strain energy is
dU ¼
Xn

i¼1

Z
dAi

ni � r̂þ
X
j 6¼i

~rj

 !
� bi dðdAÞ. ð14Þ
If dxi is an infinitesimal displacement of the point of the dislocation line associated with the variation of
the dislocation position, we have nid(dA) = dxi · dL, where dL = dLt is an infinitesimal segment of the dis-
location line (t being its unit tangent vector). It readily follows that
dU ¼
Xn

i¼1

Z
Li

f � dxi dL; ð15Þ
where
f ¼ t� r̂þ
X
j 6¼i

~rj

 !
� bi ð16Þ
is the Peach–Koehler force along the dislocation line Li due to the interaction of the ith dislocation with all
other dislocations and its own image field. Indeed, since ri ¼ r̂i þ ~ri, we have
r̂þ
X
j 6¼i

~rj ¼ r̂i þ
X
j 6¼i

rj ¼ r� ~ri. ð17Þ
The dislocations within the body V will be in equilibrium if dU = 0 for any infinitesimal variation of the
dislocation positions. Since the variations dxi are independent, it follows that for each dislocation at
equilibrium
Z

Li
f � dxi dL ¼ 0. ð18Þ
If the variation of the dislocation position corresponds to a pure translation of the amount dxi in the unit
direction x0, then dxi = dxix0. Since dxi and x0 are arbitrary, Eq. (18) implies that
Z

Li
f dL ¼ 0; ð19Þ
i.e., the total Peach–Koehler force of each dislocation due to its interaction with other dislocations is equal
to zero. If the variation of the dislocation position corresponds to rotation of the amount dxi around the
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unit direction x0 passing through an arbitrary point P, then dxi = dxix0 · (xi � xP). Since dxi and x0 are
arbitrary, Eq. (18) implies that
Z

Li
ðxi � xP Þ � f dL ¼ 0. ð20Þ
Thus the resulting moment of the Peach–Koehler forces of each dislocation due to its interaction with other
dislocations is equal to zero. Together (19) and (20) imply that the Peach–Koehler forces of each disloca-
tion, due to its interaction with other dislocations and its own image field, represent a set of the self-equil-
ibrated forces.
4. The core energy

The self-energy of an isolated Volterra dislocation loop in an infinite medium is the sum of the strain
energy exterior to the toroidal tube surrounding the dislocation line and the (divergent) core energy within
the tube,
eU i

self ¼
1

2

Z
Si

eTi
� ~ui dS þ 1

2

Z
Ai

0

ni � ~ri � bi dAþ eU i

c. ð21Þ
By comparing (21) with (11), we can formally express the misfit core energy (the energy associated with the
slip discontinuity within the core) as
1

2

Z
Ai

core

ni � ~ri � bi dA ¼ 1

2

Z
Si

eTi
� ~ui dS þ eU i

c. ð22Þ
For example, for a straight dislocation in an isotropic infinite medium with the Burgers vector
b = {b1, b2, b3} (b3 being its screw component), the work of the tractions over the internal surface of the
dislocation core is (for the Volterra dislocation)
1

2

Z
Si

eTi
� ~ui dS ¼ lðb2

1 þ b2
2Þ

8pð1� mÞ
1

2ð1� mÞ � cos 2ðh� uÞ
� �

ð23Þ
per unit length of the dislocation (Lubarda, 1997, 1998). The angle u is defined by tan u ¼ b2=b1, and the
angle h specifies the orientation of the cut surface across which the dislocation discontinuity is imposed
(Fig. 4). The shear modulus and the Poisson�s ratio of the medium are l and m. In particular, for h = u
and h = u + p/2, (23) gives
1

2

Z
Si

eTi
� ~ui dS ¼ lðb2

1 þ b2
2Þ

16pð1� mÞ2
�
ð2m� 1Þ; h ¼ u;

ð3� 2mÞ; h ¼ uþ p
2

.

�
ð24Þ
These values are the minimum and maximum values that the work over the internal surface of the dislo-
cation core can have for all straight cuts used to create the dislocation. Their difference is
lðb2

1 þ b2
2Þ=4pð1� mÞ, which can be interpreted as the work done by the net force over the core segment

of the angle p/2 (from h = u to h = u + p/2) on the translational displacements of amount b1 and b2, asso-
ciated with the change of the displacement discontinuity from the cut surface h = u to h = u + p/2. Note
also that the core energy is the same if the displacement discontinuity of magnitude b is imposed at h = u or
at h = u + p, or if b/2 is imposed at h = u and �b/2 at h = u + p.

The severe distortion of the material within the core region associated with the constant displacement
discontinuity from the center of the core gives rise to singular stress and strain fields within the core, accord-
ing to the linear elasticity theory. This divergence can be eliminated by using either non-linear or non-local
elasticity models, or semi-discrete (quasicontinuum) models. The latter are based on atomistic models



Fig. 4. Dislocation core around the straight dislocation with b2/b1 = tanu. The dislocation is created by imposing a displacement
discontinuity b = {b1, b2, b3} across the straight cut at an angle h.
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which take into account the crystallographic structure in the close proximity of the dislocation line, and the
continuum elasticity description away from this region (Teodosiu, 1982; Tadmor et al., 1996). Hirth and
Lothe (1982) report that atomistic calculations for glide dislocations in close-packed crystallographic struc-
tures suggest that the core energy per unit length of the dislocation is about (0.05–0.1)lb2 (the core radius
being of the order of b). The energy contribution given by the integral in (24) in the case of h = u is negative
and equal to �0.015lb2 (for m = 1/3). If the core energy per unit length of the straight dislocation is taken to
be eU i

c ¼ 0.075lb2, the misfit energy associated with the displacement discontinuity within the core, calcu-
lated from (22), is 0.06lb2 per unit length of the dislocation. This finite value of the core misfit energy cor-
responds to a gradual slip discontinuity within the core, embedded in a semi-discrete treatments of the core
region. For example, if one adopts the Peierls–Nabarro dislocation model (Hirth and Lothe, 1982, p. 227),
the misfit energy within the radius q, in its continuum approximation, is
W q ¼
lb2

4p2ð1� mÞ ln 1þ q2

f2

� �
tan�1 q

f

� �
�
Z q=f

0

lnð1þ z2Þ
1þ z2

dz
� �

; ð25Þ
where 2f = d/(1 � m) and d is the atomic plane separation across the slip plane. The above integral can be
evaluated numerically for any given ratio q/f. Formally, if q! R, where R is a large cut-off radius, we ob-
tain in the limit R� f, WR = lb2 ln(R/2f)/4p(1 � m). If q = f,
W f ¼
lb2

4p2ð1� mÞ G� p
4

ln 2
� �

¼ 0.09412
lb2

1� m
; ð26Þ
where G = 0.915965. . . is Catalan�s constant (Gradshteyn and Ryzhik, 1980). By taking q = 1.8d as a more
realistic value of the core radius, and m = 1/3, (25) gives Wq = 0.06lb2.

Note that the total core energy 0.075lb2 is five times greater than the traction work 0.015lb2 over the
external surface of the core (with the traction and displacement components at the core surface according
to the Volterra dislocation model). The conclusion is that the second term in (5) is either infinite (idealized
Volterra dislocation), or significantly greater than the first term (gradual slip discontinuity within the core).
In either case, the expression (4) is an inadequate account of the total dislocation core energy. In the case of
a screw dislocation, there are no stresses which do work on the cylindrical core surface (for the Volterra
dislocation), so that the core energy is entirely due to slip discontinuity within the core. In the case
of the Peierls–Nabarro dislocation model, this is given by (25) with omitted factor (1 � m), and with
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f = d/2. If q = 2d, this misfit core energy is equal to 0.07lb2. These calculations are from the continuum
model calculations; more realistic values of the core energy can be obtained by atomistic calculations which
take into account the precise atomic rearrangement (disregistry) across the slip plane, and the correspond-
ing interatomic force interactions (see, for example, Pasianot and Moreno-Gobbi (2004) and the references
therein).
5. Dislocations in an externally loaded body

5.1. Mixed boundary conditions

Consider dislocation loops in a finite body of volume V under external traction Text applied over the
portion of the bounding surface ST of the body. The displacement uext is prescribed over the remaining part
of the boundary Su = S � ST (Fig. 5). The potential energy of the body and the loading system can be con-
veniently expressed as
Fig. 5.
portion
P ¼ 1

2

Z
V
ðrext
� þ rdislÞ : ð�ext

� þ �dislÞdV �
Z

ST

Text � ðuext
� þ udislÞdS; ð27Þ
where (rdisl, �disl) are the stress and strain fields in an externally unloaded and unconstrained body due to
dislocations alone (Tdisl = 0 over S), while ðrext

� ; �
ext
� Þ are the auxiliary stress and strain fields in a dislocation

free body due to externally applied load Text and adjusted displacement boundary conditions, such that
r � rext
� ¼ 0 in V ;

n � rext
� ¼ Text on ST ;

uext
� ¼ uext � udisl on Su.

ð28Þ
The displacement field due to dislocations alone in an externally unloaded body is udisl, so that
uext
� þ udisl ¼ uext over Su. The total stress and strain within the body are r ¼ rext

� þ rdisl and
� ¼ �ext

� þ �disl, and the corresponding displacement is u ¼ uext
� þ udisl.
Dislocations in a finite body under external traction Text applied over ST. The displacement uext is prescribed over the remaining
of the boundary Su.
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There is no cross-energy term between the externally applied stress and the internal self-equilibrating
stress state, so that
Z

V
rext
� : �disl dV ¼

Z
V

rdisl : �ext
� dV ¼

Z
S

Tdisl � uext
� dS ¼ 0. ð29Þ
The potential energy is consequently
P ¼ Udisl þ 1

2

Z
V

rext
� : �ext

� dV �
Z

ST

Text � ðuext
� þ udislÞdS; ð30Þ
where Udisl is the strain energy of the body due to dislocations alone, as given by
U disl ¼ 1

2

Z
V

rdisl : �disl dV . ð31Þ
The simple structure of the potential energy expression (30) embeds the coupling between the external and
dislocation stress and strain fields only implicitly, through the auxiliary fields rext

� and �ext
� . Other represen-

tations of P are also possible, e.g., Eshelby (1982), and Van der Giessen and Needleman (1995).
The variation of the potential energy P, at fixed Text over ST and fixed uext over Su, is
dP ¼ dUdisl þ
Z

V
rext
� : d�ext

� dV �
Z

S
n � rext

� � ðduext
� þ dudislÞdS. ð32Þ
The integration in the surface integral can be extended from ST to S, because duext
� þ dudisl ¼ duext ¼ 0 over

Su. Since
Z
V

rext
� : d�ext

� dV ¼
Z

S
n � rext

� � duext
� dS; ð33Þ
the variation of the potential energy becomes
dP ¼ dUdisl �
Z

S
n � rext

� � dudisl dS. ð34Þ
However, by the Gauss divergence theorem,
Z
V

rext
� : d�disl dV ¼

Z
S

n � rext
� � dudisl dS þ

Xn

i¼1

Z
dAi

ni � rext
� � bi dðdAÞ ð35Þ
and since
Z
V

rext
� : d�disl dV ¼

Z
V

drdisl : �ext
� dV ¼

Z
S

dTdisl � uext
� dS ¼ 0; ð36Þ
we deduce from (35) that
Z
S

n � rext
� � dudisl dS ¼ �

Xn

i¼1

Z
dAi

ni � rext
� � bi dðdAÞ. ð37Þ
When this is substituted into (34), the variation of the potential energy becomes
dP ¼ dUdisl þ
Xn

i¼1

Z
dAi

ni � rext
� � bi dðdAÞ. ð38Þ
Finally, by incorporating (13) for dUdisl, there follows:
dP ¼
Xn

i¼1

Z
dAi

ni � rext
� þ r̂þ

X
j 6¼i

~rj

 !
� bi dðdAÞ. ð39Þ
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The corresponding Peach–Koehler force along the dislocation line Li is
f ¼ t� rext
� þ r̂þ

X
j6¼i

~rj

 !
� bi. ð40Þ
5.2. Traction boundary conditions

If the external traction Text is applied all over the bounding surface S of the body, the potential energy is
P ¼ 1

2

Z
V
ðrext þ rdislÞ : ð�ext þ �dislÞdV �

Z
S

Text � ðuext þ udislÞdS; ð41Þ
where (rext, �ext) are the stress and strain fields due to the externally applied load, defined such that
r � rext ¼ 0 in V ;

n � rext ¼ Text on S.
ð42Þ
By following the analysis from the previous subsection, it readily follows that
P ¼ U disl þ 1

2

Z
V

rext : �ext dV �
Z

ST

Text � ðuext þ udislÞdS ð43Þ
and
dP ¼
Xn

i¼1

Z
dAi

ni � rext þ r̂þ
X
j 6¼i

~rj

 !
� bi dðdAÞ. ð44Þ
The Peach–Koehler force along the dislocation line Li, due to the externally applied stress and the interac-
tion of the dislocation with other dislocations and its own image field, is
f ¼ t� rext þ r̂þ
X
j6¼i

~rj

 !
� bi. ð45Þ
5.3. Displacement boundary conditions

If the dislocation loops are in the body with prescribed displacement uext over the whole boundary S, the
potential energy is just the strain energy
P ¼ 1

2

Z
V
ðrext
� þ rdislÞ : ð�ext

� þ �dislÞdV ; ð46Þ
where ðrext
� ; �

ext
� Þ are the stress and strain fields due to the adjusted displacement boundary conditions, such

that
r � rext
� ¼ 0 in V ;

uext
� ¼ uext � udisl on S.

ð47Þ
The cross-energy term again vanishes, and the potential energy becomes
P ¼ U disl þ 1

2

Z
V

rext
� : �ext dV . ð48Þ
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The variation of the potential energy P, at fixed uext over S, isZ

dP ¼ dUdisl þ

V
rext
� : d�ext

� dV . ð49Þ
Since duext = 0, i.e., duext
� ¼ �dudisl, we have
Z

V
rext
� : d�ext

� dV ¼
Z

S
n � rext

� � duext
� dS ¼ �

Z
S

n � rext
� � dudisl dS. ð50Þ
Consequently, Z

dP ¼ dUdisl �

S
n � rext

� � dudisl dS. ð51Þ
The subsequent analysis proceeds as in Section 5.1, with the end result for the Peach–Koehler force accord-
ing to (40).
6. Conclusions and discussion

We have derived in this paper the equilibrium conditions for a given collection of dislocations within a
finite elastic body based on an energy expression that accounts for all of the dislocation core energy. This
improves the previous derivation given in the literature which was based on an incomplete representation of
the dislocation core energy. The difference between the two energy expressions is discussed in Section 4. For
the dislocations with a fixed size and shape, the equilibrium conditions based on the two strain energy
expressions (U and U ) are the same, because the variational principles dU = 0 and dU ¼ 0 impose the same
conditions on the Peach–Koehler dislocation forces. This holds for the dislocations in an externally un-
loaded or loaded body, regardless of the type of the boundary conditions (Section 5). The reciprocity prop-
erty of the misfit work, used in the derivation of the equilibrium conditions of Section 3, is proved in
Appendix A of the paper.

The analysis presented in this paper was restricted to an idealized situation of the dislocations with a
fixed size and shape. Furthermore, the interaction of the dislocation with itself was not considered. The lat-
ter is, of course, important for dislocation loops, since various segments of the loop interact among them-
selves. This gives rise to an additional force on an infinitesimal dislocation segment due to the stress state
exerted there by other segments of the same dislocation. Gavazza and Barnett (1976) constructed a proce-
dure to determine this self-force on a planar dislocation loop in an anisotropic infinite medium. If the loop
is given a small perturbation in its shape (dx specified along Li), the corresponding variation of the strain
energy d eU i

self can be related to the configurational dislocation force ~f along the loop by
d eU i

self ¼
Z

Li

~f � dxdL. ð52Þ
When dislocations are in a finite body, the dislocation loop will be in equilibrium if the dislocation force on
each dislocation segment, due to its interaction with the remaining segments of the same dislocation and all
other dislocations, as well as the externally applied stress, vanishes. Thus, for a body with mixed boundary
conditions,
f ¼ t� rext
� þ r̂þ

X
j 6¼i

~rj

 !
� bi þ ~f ¼ 0; ð53Þ
at each point of the dislocation loop at its equilibrium configuration. If we consider the glide dislocations
and include in the analysis the local lattice friction stress, representing a barrier for the outward and inward
advance of the dislocation segment, the dislocation will be in equilibrium if, along the loop,



V.A. Lubarda / International Journal of Solids and Structures 43 (2006) 3444–3458 3455
�f �glide 6 fglide 6 f þglide; f glide ¼ ni � rext
� þ r̂þ

X
j 6¼i

~rj

 !
� bi þ ~f glide. ð54Þ
While the determination of ~f is in general a difficult task, particularly for complicated dislocation geom-
etries, its average value along the dislocation loop can in some cases be determined readily. For example,
the mean tendency of the circular glide dislocation loop toward its self-similar shrinkage (annihilation) in
an infinite isotropic medium is
�f glide ¼ �
1

2pR
o eU self

oR
; ð55Þ
where the current radius of the loop is R. The total self-energy of the circular dislocation, including the core
energy and the energy outside the core region of radius q� R (Hirth and Lothe, 1982), is
eU self ¼ 2pR
2� m
1� m

lb2

8p
ln

4R
q
� 2

� �
þ alb2

� �
. ð56Þ
The term proportional to the parameter a accounts for the core energy. We assumed that the core energy of
each infinitesimal segment of the loop is equal to that of a straight mixed-type dislocation tangent to the
loop, so that a accounts for both edge and screw component contributions. If a is assumed to be constant
(more generally, it could depend on R), from Eqs. (55) and (56) there follows
�f glide ¼ �
lb2

R
2� m
1� m

1

8p
ln

4R
q
� 1

� �
þ a

� �
. ð57Þ
Gavazza and Barnett (1976) already calculated the shrinking tendency of the loop due to the change of
the strain energy outside the toroidal core of the dislocation loop. LeSar (2004) recently examined different
expressions for the self-energy of a dislocation loop, depending on the core cut-off procedure used to treat
the severe material distortion in the vicinity of the dislocation line. Further research is needed, at both con-
tinuum and discrete–atomistic levels, to fully address the kinematics and kinetics of the dislocation core
evolution during the expansion or annihilation of the dislocation loop. A significant insight can be gained
from the related studies of mixed atomistic–continuum models of material behavior by Miller et al. (1998),
Ortiz and Phillips (1999), and Ortiz et al. (2001).
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Appendix A. Reciprocal property of the misfit work

In the analysis of Section 3, by the Gauss divergence theorem we can write
Z
S

bTi
� d~ui dS þ

Z
dAi

ni � r̂i � bi dðdAÞ ¼
Z

V
r̂i : d~�i dV ; ð58Þ
and
 Z
dAi

ni � rj � bi dðdAÞ ¼
Z

V
rj : d~�i dV ; j 6¼ i; Tj ¼ 0 on S. ð59Þ
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The decompositions were used
ri ¼ r̂i þ ~ri; r ¼
Xn

i¼1

ri; r̂ ¼
Xn

i¼1

r̂i. ð60Þ
By the summation of the previous expressions over j 5 i, we have
Z
S

bT i
� d~ui dS þ

Z
dAi

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dðdAÞ ¼

Z
V

r̂i þ
X
j 6¼i

rj

 !
: d~�i dV . ð61Þ
Similarly,
Z
S

bT i
� ~ui dS þ

Z
Ai

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dA ¼

Z
V

r̂i þ
X
j 6¼i

rj

 !
: ~�i dV . ð62Þ
The variation of the sum of these expressions over i gives
d
Xn

i¼1

Z
Ai

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dA ¼ d

Xn

i¼1

Z
V

r̂i þ
X
j 6¼i

rj

 !
: ~�i dV � d

Xn

i¼1

Z
S

bTi
� ~ui dS. ð63Þ
Next we show that
d
Xn

i¼1

Z
V

r̂i þ
X
j 6¼i

rj

 !
: ~�i dV ¼ 2

Xn

i¼1

Z
V

r̂i þ
X
j 6¼i

rj

 !
: d~�i dV . ð64Þ
First, since
r̂i þ
X
j 6¼i

rj ¼ r̂þ
X
j 6¼i

~rj; ð65Þ
the previous expression can be rewritten as
d
Xn

i¼1

Z
V

r̂þ
X
j 6¼i

~rj

 !
: ~�i dV ¼ 2

Xn

i¼1

Z
V

r̂þ
X
j 6¼i

~rj

 !
: d~�i dV . ð66Þ
Then,
d
Xn

i¼1

X
j6¼i

Z
V

~rj : ~�i dV ¼ 2
Xn

i¼1

X
j6¼i

Z
V

~rj : d~�i dV ; ð67Þ
and
 Z
V

r̂ :
Xn

i¼1

~�i dV ¼
Z

V

Xn

i¼1

~ri : �̂dV ¼
Z

S

Xn

i¼1

eTi
� ûdS ¼ �

Z
S

bT � ûdS ¼ �
Z

V
r̂ : �̂dV . ð68Þ
The variation of the above integral is
d
Z

V
r̂ :
Xn

i¼1

~�i dV ¼ �2

Z
V

dr̂ : �̂dV ¼ �2

Z
S

dbT � û dS ¼ 2

Z
S

Xn

i¼1

deTi
� û dS

¼ 2

Z
V

Xn

i¼1

d~ri : �̂dV ¼ 2

Z
V

r̂ :
Xn

i¼1

d~�i dV .
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The substitution of this expression and (67) into (66) proves the equality.
Consider now an infinite medium with the extracted volume V and dislocations with it. The internal sur-

face S of the hollow medium V1 � V is under the traction fields bTi
¼ �eTi

and the corresponding displace-
ment fields ~ui from each dislocation. For every pair of these we can write by the Gauss divergence theorem
Z

S

bTi
� ~ui dS ¼

Z
V1�V

~ri : ~�i dV . ð69Þ
Thus,
d
Z

S

bTi
� ~ui dS ¼ 2

Z
S

bTi
� d~ui dS; ð70Þ
because d~ri : ~�i ¼ ~ri : d~�i by the reciprocal symmetry of the elastic moduli tensor and by the symmetry of
the stress and strain tensors. When (64) and (70) are substituted into (63), there follows:
d
Xn

i¼1

Z
Ai

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dA ¼ 2

Xn

i¼1

Z
V

r̂i þ
X
j 6¼i

rj

 !
: d~�i dV � 2

Xn

i¼1

Z
S

bT i
� d~ui dS. ð71Þ
The comparison with (61), summed over i, shows that
d
Xn

i¼1

Z
Ai

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dA ¼ 2

Xn

i¼1

Z
dAi

ni � r̂i þ
X
j 6¼i

rj

 !
� bi dðdAÞ. ð72Þ
Invoking (65) again we establish the reciprocal property of the misfit work,
Xn

i¼1

Z
Ai

ni � dr̂þ
X
j 6¼i

d~rj

 !
� bi dA ¼

Xn

i¼1

Z
dAi

ni � r̂þ
X
j 6¼i

~rj

 !
� bi dðdAÞ; ð73Þ
which was used in arriving at Eq. (14) of Section 3.
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